
TECHNICAL WHITEPAPERTECHNICAL WHITEPAPERFrom NaCl to WebAssembly
TECHNICAL WHITEPAPER

© 2023 MainConcept GmbH or its affiliates. All rights reserved. All trademarks, trade names and logos referenced herein belong to their respective companies.

From NaCl to WebAssembly
Exemplified by MainConcept® HEVC Decoder

Executing native code inside web browsers has a long and
rich history. This methodology is quite popular and common
nowadays as it helps to optimize critical and resource intensive
parts of web applications. For those developers looking for
native code performance inside the secure environment of
modern browsers, WebAssembly (WASM or WebASM) binary
format has become a popular option. During the past few
years, Mozilla, among others, has actively promoted this
standard. Currently it is published by W3C (World Wide Web
Consortium) as a draft for Release 1.0 [1].

MainConcept recognized the importance of web technologies
for a wide range of multimedia applications and developed
native codecs in the Google Native Client (NaCl) sandboxed
environment. When it was deprecated in favor of the natively
embedded WebAssembly binary format, MainConcept
continued to release C/C++ codecs for the web and created
the MainConcept WASM HEVC Decoder SDK product. The
primary goal for the first version was to expose unmodified

MainConcept callback APIs with inevitable speed regressions
minimized. This goal has been achieved.

The base for efficient WASM code is the Emscripten C/C++
to JavaScript compiler. It makes the WASM HEVC Decoder
creation task just a matter of compiling C/C++ code to another
target. The generated bytecode is portable to any platform
and any browser. To keep the first version as simple as
possible, MainConcept elected not to use the feature testing
framework of the WebAssembly standard. MainConcept also
unconditionally disabled threads and SIMD in the source code.
Such changes will soon no longer be required since browsers
are actively adding support for missing WebAssembly features.

Even though the C/C++ codec to WASM can be compiled
with minimum changes, it doesn’t mean that the native
performance is automatically available in a browser. The
generated bytecode must be bound to JavaScript to become
invocable from a web application, and the binding API must

EMAIL: marketing@mainconcept.com I URL: mainconcept.com/webasm I MAINCONCEPT GMBH, Elisabethstr.1, 52062 Aachen, GERMANY

AUTHOR: SERGEY BUFALOV, Manager Software Engineering at MainConcept

https://www.linkedin.com/company/mainconcept
https://twitter.com/MainConcept
https://www.youtube.com/mainconcept

TECHNICAL WHITEPAPERTECHNICAL WHITEPAPERFrom NaCl to WebAssembly
TECHNICAL WHITEPAPER

© 2023 MainConcept GmbH or its affiliates. All rights reserved. All trademarks, trade names and logos referenced herein belong to their respective companies.

[1] https://webassembly.github.io/spec

not introduce overhead. In addition, the MainConcept development team required the API contain no hand-written JavaScript and
be completely implemented in C/C++. The Emscripten compiler’s support for WebIDL made it possible to bind WASM and JavaScript
with a thin lightweight intermediate layer using IDL interface description and C/C++ interface implementation without any use of
JavaScript.

The security requirements of modern browsers require JavaScript and WASM to use different heaps for memory allocations and
prevent any direct access to each other’s memory. Bytes stored in Uint8Array on the JavaScript side must be copied to a HEAPU8.
buffer on the WASM side and vice versa. Emscripten’s support of arrays in WebIDL allows us to hide heap management and keep
the API simple and high performing, leaving the memory transfers from heap to heap the only serious overhead introduced by the
binding layer.

While decoding an input stream, the MainConcept WASM HEVC Decoder continuously reports its state via dedicated callbacks
defined by the IDL interface. Users must implement them on the JavaScript side and pass them to the C/C++ backend during
decoder creation. Callback functions are invoked from inside native code using Emscripten’s support of embedding JavaScript in C/
C++. Function arguments are passed as class objects rather than raw pointers which makes it very convenient to use callbacks on
the JavaScript side.

As expected, the WebAssembly standard specifies a very efficient binary format and has excellent support in the Emscripten
compiler. However, it cannot preserve the level of effectiveness reachable in C/C++. The table below illustrates the speed degradation
obtained on an Intel® Core™ i7-8700K @ 3.7GHz processor with 32GB RAM. The difference between columns “WASM Codec” and
“SIMD Disabled” illustrates the overhead introduced by WASM binary format, WASM heap management, and JavaScript bindings. As
one can see, the overhead is about 1/3 of the native codec with SIMD and threads disabled.

Stream
FPS

Native Codec Threads Disabled SIMD Disabled WASM Codec

720p 2 Mbit/s Main 4:2:0 1406.5 282.9 91.3 62.2

1080p 4 Mbit/s Main 4:2:0 768.5 127.0 38.7 26.5

2160p 6 Mbit/s Main 4:2:0 282.0 45.4 11.6 7.7

Table 1. The evolution of speed degradation from native HEVC Decoder to WASM Decoder.

The MainConcept WASM HEVC Decoder provides the complete set of C/C++ HEVC Decoder features (up to 14-bit 4:4:4 8K) inside
all browsers supporting WebAssembly. Keeping the code base completely in the C/C++ domain guarantees the performance and
quality based on a wide set of existing C/C++ optimization and verification techniques and methodologies. MainConcept is proud to
make this innovative new product available to our customers to demo or buy today.

CONTACT

MainConcept GmbH
Elisabethstr. 1, 52062 Aachen
GERMANY

marketing@mainconcept.com
www.mainconcept.com/webasm

AUTHOR

SERGEY BUFALOV
Manager Software Engineering
at MainConcept

REQUEST A DEMO:

 MAINCONCEPT
 WEBASM HEVC DECODER
Free evaluation downloads are available for testing.

https://www.mainconcept.com/webasm
https://www.mainconcept.com/webasm

